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The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb
self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution—the electro-
static twist rigidity of DNA is found to beCelec<5 nm, which makes up about 7% of its total twist rigidity
sCDNA <75 nmd. The electrostatic twist rigidity is found, however, to depend only weakly on the salt con-
centration, because of a competition between two different screening mechanisms:(1) Debye screening by the
salt ions in the bulk, and(2) structural screening by the periodic charge distribution along the backbone of the
helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist
rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
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I. INTRODUCTION

Genetic information in living cells is carried in the
double-helical linear sequence of nucleotides in DNA. The
DNA double helix can be found in several forms that differ
from each other in geometrical characteristics such as diam-
eter and handedness. Under normal physiological conditions,
DNA adopts theB form, in which it consists of two helically
twisted sugar-phosphate backbones with diameter 2.4 nm,
which are stuffed with base pairs and are located asymmetri-
cally with respect to each other as characterized by the pres-
ence of major and minor grooves. The helix is right handed
with ten base pairs per turn, and the pitch of the helix is
3.4 nm[1].

It is well known that abovepH 1 each phosphate group in
DNA has a negative charge[2], which renders the polymer
stiff due to the electrostatic repulsion between these groups.
The presence of neutralizing counterions and salt in the sol-
vent screens the electrostatic repulsion, thereby leading to an
effective way of controlling the stiffness of polyelectrolytes
via the ionic strength of the solution. To account for the
electrostatic stiffening, Odijk[3], and Skolnick and Fixman
[4] adopted an effective wormlike chain description for the
bending elasticity of stiff polyelectrolytes and calculated the
correction to the persistence length due to the electrostatic
interactions. The so-called electrostatic persistence length is
found to be proportional to the square of the Debye screen-
ing length, implying that the stiffness of polyelectrolytes
such as DNA should be very sensitive to the salt concentra-
tion [5]. While there are experiments that measure the elec-
trostatic contribution to the bending rigidity of DNA in vari-
ous salt concentrations[6,7], it is generally believed that
changing the ionic strength has no significant effect on the
rigidity of DNA under most physiologically relevant condi-
tions [8]. Hence, in this so-called salt saturation limit, the
bending rigidity of DNA is entirely due to the mechanical
stiffness of the double-helical backbone.

Similar studies have shown that the twist rigidity of DNA
is also relatively insensitive to the ionic strength of the solu-
tion [9]. This experimental finding is usually explained by
saying that(unlike bending) twisting a polyelectrolyte does
not change the distance between the different charges on its
backbone appreciably, and thus it is not affected by electro-
static interactions[10]. Here, we set out to reconsider this
line of argument and attempt to account for the above experi-
mental observation from a different point of view. We con-
sider the electrostatic self-interaction of the double-helical
sugar-phosphate backbone(see Fig. 1) and show that the
periodic arrangement of the charge distribution effectively
screens the electrostatic interaction, with the screening
length given by the pitch of the DNA. In other words, cor-
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FIG. 1. A schematic picture of double-helicalB-DNA with the
negative charges lying on the sugar-phosphate backbone in a peri-
odic manner.
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responding to such a periodic charge distribution, there are
two competing screening lengths:(1) the Debye screening
length of the bulk solutionk−1 that is controlled by the ionic
strength, and(2) the period of the charge distributionP, and
it is the smaller of these two lengths that controls the range
of Coulomb interaction. We find that electrostatic interac-
tions make an appreciable contribution to the twist rigidity of
DNA, although it depends only weakly on the Debye screen-
ing length as long as this length is larger than the DNA pitch.
We study the effect of various geometrical parameters such
as the diameter of the double helix, the distance between the
two helices, and the pitch, as well as the Debye screening
length, on the electrostatic contribution to the twist rigidity
and show that it can be either positive or negative depending
on the values of these parameters. The results are summa-
rized in Fig. 2, where a diagram is sketched in the parameter
space delineating all the different regimes.

The rest of the paper is organized as follows. Section II
describes the model that is used to study the electrostatic
contribution to the twist rigidity of DNA, followed by a pre-
sentation of the results in Sec. III. Finally, Sec. IV concludes
the paper, while some details of the calculations appear in
three Appendixes.

II. THE MODEL

To study the effect of electrostatic interactions on the
twist rigidity of DNA, we consider a simple model in which
the sugar-phosphate charged backbone of each DNA strand
is assumed to wrap around a cylinder of radiusa in a helical
manner, as shown in Fig. 1. The double helix can then be
viewed as a cylinder with a surface charge densityssz,ud

corresponding to the negative charges, whose electrostatic
self-energy can be calculated as

Eelec=
a2

2
E dzdz8E

0

2p

dudu8ssz,udssz8,u8d

3 VDH„urWsz,ud − rWsz8,u8du…, s1d

whererWsz,ud parametrizes the position on the surface of the
cylinder with z being the coordinate along the axis andu
being the polar angle. The effective pair potential between
two charges in the solution is given by the Debye-Hückel
interaction[11]

VDHsrd = kBT
,B

r
e−kr , s2d

where ,B=e2/ sekBTd is the Bjerrum length, andk−1 is the
Debye screening length, defined via[1]

k2 = 4p,Bo
i

Zi
2ci , s3d

whereZi andci are the valence and the concentration of the
salt speciesi, respectively, and the summation is over the
ionic species in the solution. The effect of counterion con-
densation, which is neglected in this simple Debye-Hückel
theory, will be discussed later in Sec. IV.

Due to the helical structure of DNA,ssz,ud is a doubly
periodic function, namely,ssz,ud=ssz+P,ud=ssz,u+2pd,
whereP is the helix pitch. Therefore, it is convenient to write
ssz,ud in the Fourier space as

ssz,ud = o
m,n

smne
is2pm/Pdz+inu, s4d

wherem andn are integer numbers.
Making use of the periodicity of the charge distribution,

one can simplify the form of the electrostatic self-energy of
Eq. (1) using the Fourier representation of the screened Cou-
lomb interaction. After some manipulation, whose details can
be found in Appendix A, one finds

bEelec= 4p2,BLa2o
m,n

usm,nu2InfÎskad2 + snav0d2g

3 KnfÎskad2 + snav0d2g, s5d

whereb=1/skBTd, v0=2p /P is the spontaneous twist of the
helix, andL is the overall length of the macromolecule.

We now focus on the specific case of DNA, whose charge
densityssz,ud can be written as(see Fig. 3)

ssz,ud = −
P

2pab
FdSz−

Pu

2p
D + dSz− z −

Pu

2p
DG , s6d

where b is the vertical distance between two charges in a
strand, andz is the distance between the two strands along
the z direction, as shown in Fig. 3. Note that

FIG. 2. The diagram delineating the different regimes in the
parameter space of a helical polyelectrolyte, wherev0=2p /P, and
a is the radius of the helix. The line separating the two screening
regimes has slope 1, whereas the slope of the boundary denoting the
onset of instability in the Debye screening regime is set by the
inverse of a cutoff numbernc (see below). A stable(unstable) state
corresponds to positive(negative) electrostatic twist rigidity only.
The overall stability of the macromolecule, however, is determined
by the total twist rigidity which consists of both mechanical and
electrostatic contributions(see Sec. IV).
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E
0

P

dzE
0

2p

adussz,ud = −
2P

b
s7d

yields the number of charges in each repeat unit of DNA.
The Fourier transform of the charge densitysm,n can now be
calculated from Eqs.(4) and (6) as

sm,n = −
1

2pab
dm,−nf1 + einv0zg, s8d

using which the electrostatic self-energy of the double-
helical DNA can be calculated[from Eq. (5)] as

bEelecsv0d =
4,BL

b2 o
n=0

`8
s1 + cosnv0zd 3 InfÎskad2 + snav0d2g

3 KnfÎskad2 + snav0d2g, s9d

where the prime indicates that then=0 term should be
counted with a prefactor of 1/2.

To calculate the contribution to the twist rigidity from the
above Coulomb interaction, we impose an additional uni-
form twist of V in the double helix and calculate the change
in the self-energy, i.e.,bEelecsv0+Vd−bEelecsv0d. Expanding
the energy change in powers ofV, we can then read off the
electrostatic twist rigidity as

Celec= U 1

L

]2bEelec

] V2 U
V=0

, s10d

subject to the constraint that the relative positioning of the
two helical strands should not alter upon deformation. This is
a plausible assumption, which implies that the parameterz
changes accordingly toz8 such thatsv0+Vdz8=v0z.

The total energy, which is the sum of the mechanical and
electrostatic contributions, can be written as

bEtot = bEelecsv0 + Vd +
1

2
E

0

L

ds CmechV
2, s11d

whereCmech is the mechanical twist rigidity[12]. When an
additional uniform twist ofV is imposed on the double helix,
the total energy can be written in a simple form as

bEtot =
1

2
L CmechV

2 + bEelecsv0d + LWelecV

+
1

2
L CelecV

2 + OsV3d, s12d

whereWelec is defined as

Welec; U 1

L

] bEelec

] V
U

V=0
. s13d

III. THE RESULTS

Under normal physiological conditions,k<1 nm−1 and
the spontaneous twist ofB-DNA is v0=1.85 nm−1. Since the
closed form calculation ofCelecandWelec from Eqs.(9), (10),
and (13) is cumbersome, we choose to expand the modified
Bessel functionsIn and Kn to fourth order inskad / snav0d.
This approximation appears to yield sufficient accuracy for
the experimentally relevant range of parameters.

A. Correction to twist rigidity

To calculateCelec, it is convenient to use the asymptotic
forms of Insnxd andKnsnxd for sufficiently largen. We find
that InsnxdKnsnxd=s1/2nds1/Î1+x2d+Os1/n2+dd with dù0,
and observe that to a good approximation one can just use
the relevant asymptotic forms ofIn andKn for nù2, in cal-
culating the electrostatic twist rigidity(see Appendix B for
details). We find

Celec=
2,Ba2

b2 s1 + cosv0zd3ff0sav0d − f2sav0dskad2

+ f4sav0dskad4g +
2,Ba2

b2

s2a2v0
2 − 1d

sa2v0
2 + 1d5/2

3o
n=2

`
1

n
s1 + cosnv0zd, s14d

where f0sxd, f2sxd, and f4sxd are functions defined in Appen-
dix C. The first term in the above equation corresponds to the
lowest mode of the self-energy, and comes from the electro-
static interactions between the charges that are positioned on
different domains. The expansion inka is meant to capture
the Debye screening correction. The rest is the contribution
from higher modes that constitute electrostatic interactions
between charges that are closer to each other, and appears to
smear out the Debye screening correction more strongly than
the lowest mode contribution.

The coefficient of the summation term in Eq.(14) shows
the possibility of a sign change whenav0=1/Î2. This can be
understood as a competition between the instability due to

FIG. 3. A schematic picture of the surface charge distribution of
B-DNA. The geometrical parameters of DNA are shown in the pic-
ture: b is the vertical distance between two successive charges on
each strand,z is the distance between the two strands along thez
axis (given by the width of the minor groove inB-DNA), andP is
the pitch of the helix.
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the so-called Earnshaw theorem[13], which is inherent to a
collection of electrostatic point charges in any space configu-
ration, and the structural screening, which tends to remove
this instability.

In the summation term in Eq.(14) above, where we have
used the asymptotic forms of the Bessel functions, no depen-
dence onk remains and only the structural parameters of
DNA such asa and v0 enter. The summation diverges as
1/n, and needs to be regularized with a cutoff forn, which
can be estimated asnc=2pa/ t, wheret is set by the thickness
of each strand. Then Eq.(14) can be written as

Celec=
2,Ba2

b2 s1 + cosv0zd3ff0sav0d − f2sav0dskad2

+ f4sav0dskad4g +
2,Ba2

b2

s2a2v0
2 − 1d

sa2v0
2 + 1d5/2

3Fg + ln
nc

2 sinsv0z/2d
− s1 + cosv0zdG , s15d

where g=0.577 216 is the Euler constant. Note that the
above result, as we have already mentioned, is valid only for
k,v0.

Let us first evaluate the overall magnitude of the electro-
static twist rigidity, as given by Eq.(15). For B-DNA, we
have a=1.2 nm,v0=1.85 nm−1, b=3.4 Å, and z=1.13 nm
[2], and the Bjerrum length is given as,B=7.1Å. Using these
parameters and definingC0;2,Ba2/b2, we find C0=174Å,
which is relatively large. To estimatenc for B-DNA, we use
t<5 Å, which givesnc<15. Using these estimates andk
<1 nm−1, Eq. (15) yields Celec=46 Å at the physiological
salt concentration. This should be compared to the overall
twist rigidity of B-DNA, which is believed to be about
75 nm [14].

To study the effect of various parameters, namely, the
spontaneous twist, the diameter, and the asymmetry of the
double helix, as well as the salt concentration, we choose to
work with the three dimensionless parametersav0, ka, and
zv0. In Fig. 4, the behavior ofCelec is shown as a function of

av0 for ka=1.2 andzv0=2.1. The domain forav0 is chosen
such that the conditionk,v0 is satisfied and Eq.(15) is
valid. The plot shows that, for sufficiently high salt concen-
tration, the electrostatic torsional stiffness decreases as the
spontaneous twist of the double helix increases.

For sufficiently low salt concentration, however, it ap-
pears that the behavior is not always monotonic, as shown in
Fig. 5, whereCelec is plotted as a function ofav0 for ka
=0.2 andzv0=2.1. Interestingly, one can see thatCelec can
even become negative, due to the fact that in Eq.(15) the
first term becomes relatively weak for low salt concentra-
tions and the second term, which is dominant, changes sign
for av0,1/Î2.

In Fig. 6, the dependence ofCelec is shown on the asym-
metry parameterzv0 for ka=1.2 andav0=2.2. One observes
that, for the relatively large window of 0.4pøzv0ø1.6p,
Celec is almost constant, and is thus not sensitive to the rela-
tive positioning of the two strands. Forzv0=0 and 2p, a
divergence sets in due to the fact that the charges on the two
strands develop contacts with each other.

FIG. 4. Celec/C0 as a function ofav0. This plot corresponds to
ka=1.2 andzv0=2.1.

FIG. 5. Celec/C0 as a function ofav0. This plot corresponds to
ka=0.2 andzv0=2.1.

FIG. 6. Celec/C0 as a function ofzv0/p. This plot corresponds
to ka=1.2 andav0=2.2.
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Finally, the behavior ofCelec is shown in Fig. 7 as a func-
tion of ka for zv0=2.1 andav0=2.2. The dependence on the
Debye screening parameter in Eq.(15) comes only from the
first term, where the negative sign of the coefficient ofskad2

causes a dip in the plot forCelec aroundka<1.3, which by
chance corresponds to the normal physiological salt concen-
tration. However, as can be seen from Fig. 7, the dependence
of the electrostatic twist rigidity onka is extremely weak as
long as k,v0, which is a manifestation of the fact that
screening is controlled by the periodic charge distribution
and the effective screening length is set by the pitchP, which
is shorter thank−1 in this regime(see the discussion below).

It is worth saying a few words about the other limit where
k.v0, corresponding to high salt concentration. In Eq.(9),
one can clearly see that in thenth term in the series there is
a competition betweenk andnv0 to control the screening. If
the salt concentration is so high that we havek.ncv0, the
periodic structure plays no role and screening is entirely con-
trolled by the Debye screening in the bulk. For relatively
strong Debye screening whenka.1, we can use the simple
asymptotic forms of the Bessel functions and find an
asymptotic expression for the electrostatic twist rigidity as

Celec=
2,Ba2

b2 o
n=1

nc

s1 + cosnv0zd
n2f2snav0d2 − skad2g
fskad2 + snav0d2g5/2 .

s16d

This expression can be used for the regionk.v0, where it
predictsCelec.0 for k,sv0, andCelec,0 for k.sv0, for a
value ofs<nc.

B. Correction to spontaneous twist

Similarly, we can calculate the electrostatic contribution
to the spontaneous twist of the charged double helix. To that
end, we expand the modified Bessel functionsIn and Kn to
the fourth order inskad / snav0d, and make use of the relevant
asymptotic forms ofInsxd andKnsxd for nù2. We find

Welec=
4,Ba

b2 s1 + cosv0zd

3 fg0sav0d − g2sav0dskad2 + g4sav0dskad4g

−
4,Ba

b2 Fg + ln
nc

2 sinsv0z/2d
− s1 + cosv0zdG ,

s17d

where the summation onn has been performed using the
cutoff nc, as discussed in Sec. III A. Note that the above
result is valid only fork,v0.

By definingW0;4,Ba/b2 and using the geometrical pa-
rameters forB-DNA (see Sec. III A above), we find W0
=29.5. So Eq.(17) yieldsWelec=−11.1 at a physiological salt
concentrationsk<1 nm−1d.

Let us now study the behavior ofWelec as a function of
av0, ka, andzv0. In Fig. 8, the dependence ofWelec is shown
on the parameterav0 for ka=1.2 andzv0=2.1. The plot
shows that for sufficiently high salt concentration the elec-
trostatic correction to the spontaneous twist increases as the
mechanical spontaneous twist of the double helix increases.

In Fig. 9, the behavior ofWelec is shown as a function of
av0 for ka=1.2 andzv0=2.1. One can see that, contrary to
the Celec case,Welec never changes its sign and it is always
negative.

In Fig. 10, the dependence ofWelec on the asymmetry
parameterzv0 is sketched, forka=1.2 andav0=2.2. As in
the Celec case, for the relatively large window of 0.4p
øzv0ø1.6p, Welec does not appear to change appreciably,
and thus it is not sensitive to the relative positioning of the
two strands. Forzv0=0 andzv0=2p, there is a divergence
in Welec due to the fact that the charges on the two strands
come into contact with each other.

Finally, the behavior ofWelec is shown in Fig. 11 as a
function of ka for zv0=2.1 andav0=2.2. As one can see,
the dependence ofWelec on ka is very weak fork,v0,

FIG. 7. Celec/C0 as a function ofka. This plot corresponds to
zv0=2.1 andav0=2.2. FIG. 8. Welec/W0 as a function ofav0. This plot corresponds to

ka=1.2 andzv0=2.1.
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which is due to the fact that the screening is controlled by the
periodic charge distribution in this regime.

In the opposite limit wherek.v0, corresponding to high
salt concentration, one can again use the appropriate limiting
form of the Bessel functions, and findWelec as

Welec= −
2,Ba

b2 o
n=1

nc

s1 + cosnv0zd
n2av0

fskad2 + snav0d2g5/2

s18d

to the leading order. This expression confirms thatWelec is
also negative in the highly screened case. The facts that the
electrostatic contribution to the spontaneous twist is negative
and that DNA tends to undertwist because of electrostatics
can be understood as being a result of the electrostatic repul-

sion between the charges along the backbone.

IV. DISCUSSION

For a polyelectrolyte with a periodic spatial charge distri-
bution, such as the double-helical structure of DNA, there
are two competing mechanisms for screening the electro-
static self-interaction and its contribution to the twist rigid-
ity: the Debye screeningdue to the free ions in the solution,
and thestructural screeningcaused by the periodic structure
of the charge distribution; a periodic charge distribution
leads to an electric potential that decays exponentially. While
the screening length for the former case is set by the Debye
lengthk−1, it is set by the periodP of the charge distribution
in the latter, and the dominant mechanism corresponds to the
one with the shorter screening length.

It appears that the contribution of electrostatic interactions
to twist rigidity can be either negative or positive, depending
on the parameters. The negative values for the electrostatic
torsional stiffness could lead to instability in the structure of
the helical polyelectrolyte, depending on whether the me-
chanical structure of the macromolecule can counterbalance
the effect of the electrostatic instability. We have used this
criterion in Fig. 2 to summarize these different regimes in the
parameter space. Considering that a helical polyelectrolyte
seems to be the general structure of many stiff biopolymers
(such as DNA and actin filaments) it is interesting to know
which helical configurations can in principle lead to stable
structures, and which ones cannot. This could be especially
important in the case of biopolymers that self-assemble
through polymerization processes, such as actin filaments,
where such energetic considerations could hamper or favor
the polymerization process. Note that the onset of instability
can only suggest that the structure will tumble into another
configuration, and determining the final stable structure re-
quires knowledge of other interactions.

The twist rigidity of B-DNA is believed to be roughly
75 nm [14], which should be thought of as the sum of the

FIG. 9. Welec/W0 as a function ofav0. This plot corresponds to
ka=0.2 andzv0=2.1.

FIG. 10. Welec/W0 as a function ofzv0. This plot corresponds to
ka=1.2 andav0=2.2.

FIG. 11. Welec/W0 as a function ofka. This plot corresponds to
zv0=2.1 andav0=2.2.
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mechanical and the electrostatic contributions:C=Cmech
+Celec. Our estimate ofCelec<5 nm reveals that about 7% of
the twist rigidity of DNA is due to electrostatic interactions.
This result is more or less independent of the salt concentra-
tion, as the dependence ofCelec on salt concentration is very
weak. For example, the difference betweenCelec at zero and
very high salt concentration is about 3.5 Å. Therefore
DCelec/C=0.5%, which is very small. While this naturally
explains why in experiments no sensitivity to the salt con-
centration has been observed, it certainly does not mean that
the electrostatic contribution toC is negligible.

In expanding the energy expression around the minimum
energy configuration, we have used the spontaneous twist of
v0 as the reference point[see Eqs.(10) and(13)], as opposed
to the preferred value due to the combination of the mechani-
cal and the electrostatic contributions. One can show that the
renormalized spontaneous twist is given asv=v0−Dv with
Dv=Welec/Cmechto the leading order. Putting in numbers, we
find Dv<−0.16 nm−1, which means that the overall correc-
tion for the spontaneous twist ofB-DNA is at least one order
of magnitude smaller thanv0, and thus it will not affect the
obtained results to the leading order. So it would be a good
approximation to estimate the electrostatic contribution to
the twist rigidity atv0.

Screening effects are the result of the interaction between
polyelectrolyte charges and the mobile charges in the sol-
vent. In a very dilute solution, the screening problem can be
treated by considering the electrostatic potential around a
polyelectrolyte chain, which can be obtained by solving the
Poisson-Boltzmann equation. For high salt concentration, the
screening will be very strong and the Debye-Hückel equa-
tion, which is a linearized approximation of the Poisson-
Boltzmann equation, yields a sufficiently accurate descrip-
tion of the screening potential. In the case of weak screening,
however, the Poisson-Boltzmann equation predicts that the
counterions accumulate nearby the polyelectrolyte; a phe-
nomenon termed counterion condensation. In this case, it has
been shown that an effective description in which a con-
densed layer of counterions is assumed in the immediate
vicinity of the polyelectrolyte(with the major effect of renor-
malizing the surface charge density) and a coupled Debye-
Hückel screening in the bulk is a good approximation to the
nonlinear Poisson-Boltzmann screening[15–17].

Let us now try to elaborate on the effect of counterion
condensation. For double-stranded DNA, the charge density
is sufficiently high such that counterions will condense on
the DNA, where they are confined near the sugar-phosphate
backbone[18]. The condensed layer of counterions can de-
velop three kinds of ordering depending on the competition
between electrostatic correlations, substrate interactions, and
thermal fluctuations[19]. If the substrate interaction is so
strong that the counterions are bound to be adsorbed onto
specific sites and stay there, then the counterion layer
couples to the substrate charge distribution and makes a
commensurate ordered structure. This will be the case, for
example, when thepH is changed and the H+ counterions
neutralize some of the phosphate groups of DNA. In this
case, the effect of counterion condensation on the electro-
static twist rigidity can be taken into account by simply using
the effective distance between neighboring chargesbeff in-
stead ofb in the present analysis.

When the electrostatic correlations dominate, counterions
may form an ordered Wigner liquid in which the layer is
completely decorrelated from the underlying substrate. In
this case, the presence of the counterion layer does not have
an effect on the electrostatic twist rigidity due to lack of
coupling. This is also the case when thermal fluctuations
wash out all the ordering, again because the counterion layer
is decoupled from the substrate charge distribution.

When the pitch of the DNA is changed, the linear charge
density will change because the same number of charges will
be distributed on a different length. Therefore, the amount of
condensed ions on the rod will change, which will make an
entropic contribution to the twist rigidity. The electrostatic
free energy of a charged rod above the threshold of counter-
ion condensation can be written as[15,20] bF
.sN/jdlnskad whereN is the total number of monovalent
charges on the rod andj is the Manning parameter, that is
defined asj=,B/ sP/n0d, wheren0 is the number of negative
charges on one pitch of the double-helical polyelectrolyte
(n0=20 for DNA). This leads to a contribution to twist rigid-
ity due to counterion condensation, that is given byCcond
<s2/,Bv0

2dlnskad. For the physiological condition, we have
Ccond<1.5 Å, which is much smaller thanCelec, and thus the
entropic effect is negligible.

The effect of dielectric discontinuity in the vicinity of the
polyelectrolyte has been neglected in the present analysis.
The interior of DNA has a very low dielectric constant and
the contrast with the bulk dielectric constant(which is about
80) can affect the electrostatic self-interaction. This effect
has been studied in the case of DNA, and it has been shown
that it will enhance counterion condensation by effectively
strengthening the substrate potential to such an extent that
the counterion layer will become commensurate with the
double-helical backbone[18]. In this case, one can incorpo-
rate the effect of the dielectric discontinuity by using a cor-
respondingbeff, as discussed above. Another effect of a low
dielectric constant in the interior would be the appearance of
image charges, which would slightly enhance the electro-
static self-energy.

In the above analysis we have assumed that imposing a
finite angle of twist between the two ends of a helical poly-
electrolyte leads to a uniform twist. This is analogous to the
assumption of uniform bending made by Odijk when calcu-
lating the electrostatic bending rigidity, and presumably
holds true when the effective elasticity due to electrostatics is
local. In Ref. [21], this assumption was scrutinized, and it
was shown that this assumption is valid provided one of
these conditions holds:(1) the polyelectrolyte segment is
long, (2) the Debye screening is strong,(3) the charging is
weak, or(4) the mechanical stiffness of the polyelectrolyte is
larger than the electrostatic contribution. We expect the same
argument to hold true for the twist rigidity as well. Since for
the case of DNA we have shown that the mechanical twist
rigidity is much larger than the electrostatic contribution, we
can safely assume that the twist is uniform.

In conclusion, we have studied the electrostatic contribu-
tion to the twist rigidity of DNA, taking into account its
dependence on the salt concentration in the solvent. We have
shown that there is a non-negligible electrostatic contribution
to the twist rigidity, which varies very slowly on changing
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the salt concentration in the solution. By changing the geo-
metrical parameters of the helix and the Debye screening
length, the electrostatic twist rigidity can change sign and
become negative, implying that a helical structure could be a
stable as well as an unstable configuration for a helical poly-
electrolyte. We finally note that the present analysis can be
also applied to other biopolymers such asF-actin.
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APPENDIX A: COULOMB ENERGY IN FOURIER SPACE

Due to the periodicity of the charge distribution, it is con-
venient to calculate the electrostatic self-energy in Eq.(1) in
Fourier space. We start from the Fourier representation of the
screened Debye-Hückel interaction in Eq.(2):

bEelec=
a2

2
E d3k

s2pd3 E dzdz8E
0

2p

dudu8ssz,udssz8,u8d

3
4p,B

k2 + k2eikW·frWsz,ud−rWsz8,u8dg. sA1d

Using cylindrical coordinates, we can writerWsz,ud=zẑ

+ascosux̂+sin uŷd, which in conjunction with kW =kzẑ
+k'scosfx̂+sin fŷd, yields

bEelec=
,Ba2

2
E dzdz8E

0

2p

dudu8

3E
−`

+` dkz

2p
E

0

` k'dk'

s2pd2 E
0

2p

dfo
m,n

o
m8,n8

sm,nsm8,n8

3
4p

kz
2 + k'

2 + k2eis2pm/P+kzdz+inu+ik'a cossf−ud

3eis2pm8/p−kzdz8+in8u8−ik'a cossf−u8d. sA2d

After integration overz, z8, andkz, we find

bEelec=
,Ba2

2
E

0

2p

dudu8dfE
0

` k'dk'

s2pd2

3 o
m,n

o
m8,n8

sm,nsm8,n8

4pLdm,−m8

s2pm/Pd2 + k'
2 + k2

3 eisnu+n8u8d+iak'fcossf−ud−cossf−u8dg. sA3d

By definingu=u1+f andu8=u2+f, the integration over the
three angles in Eq.(A3) can be performed as

E dudu8dfeisnu+n8u8d+iak'fcossf−ud−cossf−u8dg

= s2pd3dn,−n8fJnsk'adg2, sA4d

to yield

bEelec= 4p2,BLa2o
m,n

usm,nu2E
0

`

dk'k'

Jn
2sk'ad

s2pm/Pd2 + k'
2 + k2 .

sA5d

Performing the final integration overk' using [22]

E
0

` x

x2 + h2fJnsxdg2dx= InshdKnshd, sA6d

we obtain the result quoted in Eq.(5).

APPENDIX B: ASYMPTOTIC FORMS OF THE BESSEL
FUNCTIONS

In this appendix, the asymptotic forms ofInsnxd and
Knsnxd for largen are derived. We use the integral represen-
tation of these functions:

Insnxd =
1

p1/2sn − 1/2d! Snx

2
DnE

−1

+1

dpenxps1 − p2dn−1/2,

Knsnxd =
p1/2

sn − 1/2d! Snx

2
DnE

1

`

dpe−nxpsp2 − 1dn−1/2.

sB1d

Let us first consider the case ofInsnxd. We denote

Q ; E
−1

+1

dp enxps1 − p2dn−1/2 =E
−1

+1

dpegspd sB2d

and expandgspd aroundp0, the position of its maximum, to
second order ofsp−p0d, as

gspd . gsp0d +
1

2
f88sp0dsp − p0d2

= nxp0 + Sn −
1

2
Dlns1 − p0

2d − Sn −
1

2
D 1 + p0

2

s1 − p0
2d2sp − p0d2,

sB3d

where

p0 =
− 1 +Î1 + x2

x
+

1

2nxS1 +
1

Î1 + x2D . sB4d

Using this form forgspd, Q can be found as

Q .
1 − p0

2

Îns1 + p0
2d

enxp0+sn−1/2dlns1−p0
2d. sB5d

Finally, using Stirling’s formula forn!, we find

Insnxd .
1

Î2p

1 − p0
2

Îns1 + p0
2d

3 esn−1/2dlns1−p0
2d+nxp0+nf1+lnsx/2dg+1/24n. sB6d

Using a similar treatment, we find the largen asymptotic
behavior forKnsnxd as
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Knsnxd .
1

Î2n

p08
2 − 1

Îns1 + p08
2d

3 etsn−1/2dlnsp08
2−1d−nxp08+nf1+lnsx/2dg+1/24n, sB7d

where

p08 =
1 +Î1 + x2

x
−

1

2nxS1 +
1

Î1 + x2D . sB8d

By using these relations forInsnxd andKnsnxd, we find

InsnxdKnsnxd =
1

2Î1 + x2

1

n
+ OS 1

n2+dD , sB9d

wheredù0.
We defineDsn,xd; InsnxdKnsnxd−1/2nÎ1+x2 and in Fig.

12 show the behavior ofDsn,xd as a function ofn for several
values ofx. As can be seen, the difference is less than 0.25%
in the worst case, which implies that the asymptotic form of
InsnxdKnsnxd for nù2 can be used as a good approximation
for the range ofx we are interested in.

In Fig. 13, we show the behavior ofDsn,xd as a function
of x for different values ofn. This plot shows that fornù2
the difference goes to zero asx increases.

APPENDIX C: THE EXPLICIT FORMS OF THE
AUXILIARY FUNCTIONS

In this appendix, we give the explicit forms of the auxil-
iary functions used in Eqs.(14), (15), and (17), above. The
function f0sxd reads

f0sxd = 4S1 +
1

x2DI1sxdK1sxd + 4I18sxdK18sxd

−
2

x
fI1sxdK18sxd + I18sxdK1sxdg, sC1d

where the prime indicates differentiation. One can show that
for x!1 it behaves asf0sxd=ln x+Osx2ln xd. The second
function f2sxd is written as

f2sxd = − 3S1

x
+

1

x3DfI1sxdK18sxd + I18sxdK1sxdg +
1

x
fI18sxdK28sxd

− I28sxdK18sxdg +
3

x2fI1sxdK1sxd − 2I18sxdK18sxdg

+
3

2x2fI28sxdK1sxd − I1sxdK28sxdg +
2

x3fI1sxdK2sxd

− I2sxdK1sxdg, sC2d

and for x!1 it behaves as f2sxd=1/s2x2d−ln x/2
+Osx2ln xd. Finally, for f4sxd we have

f4sxd =
176 + 136x2 + 19x4

16x6 I1sxdK1sxd −
7

8x3fI3sxdK18sxd

+ I18sxdK3sxdg +
1

x4fI2sxdK18sxd − I18sxdK2sxdg

+
11 + 2x2

x4 I18sxdK18sxd +
1

16x2I3sxdK3sxd

+
14 + 3x2

8x4 fI28sxdK1sxd − I1sxdK28sxdg

−
88 + 49x2

8x5 fI18sxdK1sxd + I1sxdK18sxdg

FIG. 12. Difference between the asymptotic form of
InsnxdKnsnxd and its exact value as a function ofn for several val-
ues ofx. The solid line corresponds tox=0.8, the dashed line cor-
responds tox=1.8, and the dotted line corresponds tox=2.8. The
difference is less than 0.25%.

FIG. 13. Difference between the asymptotic form of
InsnxdKnsnxd and its exact value as a function ofx for different
values ofn. The solid line corresponds ton=2, the dashed line
corresponds ton=3, and the dotted line corresponds ton=5. The
difference is less than 0.3%.
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−
1

x5fI2sxdK1sxd − I1sxdK2sxdg, sC3d

which behaves as f4sxd=3/s4x4d−1/s8x2d+5/64 lnx
+Osx2 ln xd, for x!1. At infinity, all of these functions go to
zero faster than 1/x2, with f4sxd vanishing faster thanf2sxd,
and f2sxd faster thanf0sxd. (See Fig. 14).

The functiong0sxd is given by

g0sxd = I18sxdK1sxd + I1sxdK18sxd, sC4d

where the prime indicates differentiation. It is simple to show
that for x!1 it behaves asg0sxd= 1

8s1+4g−4 ln 2dx
+ 1

2x ln x+Osx3d and for x@1 it behaves asg0sxd=−1/2x2

+Os1/x4d. The functiong2sxd is written as

g2sxd =
1

2x2fI1sxdK18sxd + I18sxdK1sxdg −
1

2x
fI1sxdK1sxd

+ I18sxdK18sxdg −
1

4x
fI28sxdK1sxd − I1sxdK28sxdg,

sC5d

which behaves asg2sxd=−1/s4xd+Osxd for x!1 and as

g2sxd=−3/s4x4d+Os1/x6d for x@1. Finally, for g4sxd we
have

g4sxd =
1

x2fI18sxdK1sxd + I1sxdK18sxdg +
1

3x2fI28sxdK18sxd

− I18sxdK28sxdg −
1

4x3f4I18sxdK18sxd + 3I1sxdK1sxdg

−
1

8x3fI28sxdK1sxd − I1sxdK28sxdg +
1

x4fI18sxdK1sxd

+ I1sxdK18sxdg −
1

x5I1sxdK1sxd, sC6d

which behaves asg4sxd=−1/s8x3d+1/s16xd+Osxd for x!1,
and asg4sxd=−15/s16x6d+Os1/x8d for x@1. In Fig. 15, we
show the behavior ofgisxd as a function ofx.
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