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Electrostatic contribution to twist rigidity of DNA
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The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb
self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution—the electro-
static twist rigidity of DNA is found to beC,ec=5 nm, which makes up about 7% of its total twist rigidity
(Cona=75 nm). The electrostatic twist rigidity is found, however, to depend only weakly on the salt con-
centration, because of a competition between two different screening mechafiisdsbye screening by the
salt ions in the bulk, an@) structural screening by the periodic charge distribution along the backbone of the
helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist
rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
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I. INTRODUCTION Similar studies have shown that the twist rigidity of DNA
. L ) o is also relatively insensitive to the ionic strength of the solu-
Genetic mfo_rmatlon in living cells is carr_led in the tion [9]. This experimental finding is usually explained by
double-helical I||_’1ear sequence c_)f nucleotides in DNA-_Thesaying that(unlike bending twisting a polyelectrolyte does
DNA double helix can be found in several forms that differ ot change the distance between the different charges on its
from each other in geometrical characteristics such as dianyackbone appreciably, and thus it is not affected by electro-
eter and handedness. Under normal physiological conditiongagic interactiong10]. Here, we set out to reconsider this
DNA adopts the form, in which it consists of two helically  |ine of argument and attempt to account for the above experi-
twisted sugar-phosphate backbones with diameter 2.4 NMinenta| observation from a different point of view. We con-
which are stuffed with base pairs and are located asymmetriiqer the electrostatic self-interaction of the double-helical
cally with respect to each other as characterized by the PreSygar-phosphate backboitgee Fig. 1 and show that the
ence of major and minor grooves. The helix is right handedheriodic arrangement of the charge distribution effectively
with ten base pairs per turn, and the pitch of the helix iSscreens the electrostatic interaction, with the screening

3.4 nm[1]. _length given by the pitch of the DNA. In other words, cor-
It is well known that abovepsH 1 each phosphate group in

DNA has a negative charg®], which renders the polymer
stiff due to the electrostatic repulsion between these groups.
The presence of neutralizing counterions and salt in the sol-
vent screens the electrostatic repulsion, thereby leading to an
effective way of controlling the stiffness of polyelectrolytes
via the ionic strength of the solution. To account for the
electrostatic stiffening, Odijk3], and Skolnick and Fixman

[4] adopted an effective wormlike chain description for the
bending elasticity of stiff polyelectrolytes and calculated the
correction to the persistence length due to the electrostatic
interactions. The so-called electrostatic persistence length is
found to be proportional to the square of the Debye screen-
ing length, implying that the stiffness of polyelectrolytes
such as DNA should be very sensitive to the salt concentra-
tion [5]. While there are experiments that measure the elec-
trostatic contribution to the bending rigidity of DNA in vari-
ous salt concentrationfs,7], it is generally believed that
changing the ionic strength has no significant effect on the
rigidity of DNA under most physiologically relevant condi-
tions [8]. Hence, in this so-called salt saturation limit, the
bending rigidity of DNA is entirely due to the mechanical
stiffness of the double-helical backbone.

FIG. 1. A schematic picture of double-helidaiDNA with the
*Electronic address: farshidm@iasbs.ac.ir negative charges lying on the sugar-phosphate backbone in a peri-
"Electronic address: golestan@iasbs.ac.ir odic manner.
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corresponding to the negative charges, whose electrostatic
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self-energy can be calculated as
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2 wherer(z, §) parametrizes the position on the surface of the
0%' cylinder with z being the coordinate along the axis aéd
Debye / being the polar angle. The effective pair potential between
Screening Unstable two charges in the solution is given by the Debye-HUckel
interaction[11]
»
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Vpu(r) = kBTTBe"‘r, (2)
FIG. 2. The diagram delineating the different regimes in the
parameter space of a helical polyelectrolyte, whege 27/P, and where€B=e2/(ekBT) is the Bjerrum length, ana~! is the

a is the radius of the helix. The line separating the two screenin : " .
8 i reening length, defin
regimes has slope 1, whereas the slope of the boundary denoting t%)eebye screening length, defined {H

onset of instability in the Debye screening regime is set by the 5 >
inverse of a cutoff numben, (see below. A stable(unstablg state K= 47T€BZ Zic, 3
corresponds to positivenegative electrostatic twist rigidity only. :

The overall stability of the macromolecule, however, is determined hereZ and th | dth trati fth
by the total twist rigidity which consists of both mechanical and WNeres; andg; are the valence an € concentration of the

electrostatic contributiongsee Sec. 1. _sal'g specigsi, respectively_, and the summation is over the
ionic species in the solution. The effect of counterion con-
densation, which is neglected in this simple Debye-Huckel
ﬂweory, will be discussed later in Sec. IV.

Due to the helical structure of DNAg(z, 6) is a doubly

responding to such a periodic charge distribution, there ar
two competing screening lengthgt) the Debye screening

) . -
length of the bulk solutio™ that is controlled by the ionic periodic function, namelyg(z, 6)=o(z+P, 6)= o(z, 6+ 27),

?tfength' and2) the period of the charge distributidh and whereP is the helix pitch. Therefore, it is convenient to write
it is the smaller of these two lengths that controls the range (z.9) in the Fourier space as
of Coulomb interaction. We find that electrostatic interac-?"*" P

tions make an appreciable contribution to the twist rigidity of i miP)z+ing

DNA, although it depends only weakly on the Debye screen- 9(2,0)= 2 o ' (4)
ing length as long as this length is larger than the DNA pitch. mn

We study the effect of various geometrical parameters such

; ; : wherem andn are integer numbers.
as the diameter of the double helix, the distance between the Making use of the periodicity of the charge distribution,

two helices, and the p|tc_h, as erll as the Debyg SCreening e can simplify the form of the electrostatic self-energy of
length, on the electrostatic contribution to the twist rigidity Eq. (1) using the Fourier representation of the screened Cou-

and show that it can be either positive or negative dependin% . : . : )
mb interaction. After some manipulation, whose details can
on the values of these parameters. The results are summa-

rized in Fig. 2, where a diagram is sketched in the parametere found in Appendix A, one finds
space delineating all the different regimes.

The rest of the paper is organized as follows. Section II BEeiec= 4T 6L’ |1V (1@)% + (Nawp)?]
describes the model that is used to study the electrostatic mn
contribution to the twist rigidity of DNA, followed by a pre- X K [V(xa)? + (nawg)?], (5)

sentation of the results in Sec. Ill. Finally, Sec. IV concludes
the paper, while some details of the calculations appear iwhereB=1/(kgT), wy=27/P is the spontaneous twist of the
three Appendixes. helix, andL is the overall length of the macromolecule.
We now focus on the specific case of DNA, whose charge
densityo(z, ) can be written agsee Fig. 3

Il. THE MODEL
. . P Po Po
_To _st.ut_jy the effect of ele.ctrostat}c |nteract|ons on the o(z,0) = - 6(2——) + 5(2— g——) )
twist rigidity of DNA, we consider a simple model in which 2mab 27 2

the sugar-phosphate charged backbone of each DNA strand

is assumed to wrap around a cylinder of radius a helical whereb is the vertical distance between two charges in a
manner, as shown in Fig. 1. The double helix can then bstrand, and, is the distance between the two strands along
viewed as a cylinder with a surface charge densify, 6) the z direction, as shown in Fig. 3. Note that
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L

BEtot: BEeIeL(wO + Q) + %f dS Q’nec@z’ (11)

0

where Ccn IS the mechanical twist rigidity12]. When an
additional uniform twist of} is imposed on the double helix,
the total energy can be written in a simple form as

1
BEor = EL Cmecf(22 + BEeIeL(wO) + LWejed2

# 3L Cael?+0(0), 12

whereW, .. is defined as

e o _ 10BEae 3
elec L 90 “:0-

FIG. 3. A schematic picture of the surface charge distribution of
B-DNA. The geometrical parameters of DNA are shown in the pic-
ture: b is the vertical distance between two successive charges on 1Il. THE RESULTS
each strand{ is the distance between the two strands alongzthe . ) .
axis (given by the width of the minor groove iB-DNA), andP is Under normal physiological conditiong~1 nnT* and
the pitch of the helix. the spontaneous twist &DNA is wy=1.85 nnT’. Since the

closed form calculation o€ecandWge.from Eqgs.(9), (10),
P o and(13) is cumbersome, we choose to expand the modified
f dzf adbo(z, ) = _2P (7)  Bessel functiond, andK, to fourth order in(«a)/(nawp).
0 0 b This approximation appears to yield sufficient accuracy for

] ] ) the experimentally relevant range of parameters.
yields the number of charges in each repeat unit of DNA.

The Fourier transform of the charge density, can now be . o
calculated from Eqs(4) and (6) as A. Correction to twist rigidity
To calculateCg, it is convenient to use the asymptotic

forms of I,(nx) and K ,(nx) for sufficiently largen. We find
that I,,(nX)K,(nx)=(1/2n)(1/y1+x?)+O(1/n?*%) with §=0,
) ) ) and observe that to a good approximation one can just use
using which the electrostatic self-energy of the doubleyne relevant asymptotic forms ¢f andK,, for n=2, in cal-

1 A
Omn= = g oml L+ €], ®)

helical DNA can be calculateffrom Eq.(5)] as culating the electrostatic twist rigiditgsee Appendix B for
w0 detaily. We find
4 BL ’!ﬁ
BEeied wo) = ?E (1 + cosnwgd) X 15[ V(«a)” + (Nawo)’] 2(ga’ )
n=0 Celec= T(l + coswyl) X [ fo(awp) — fr(awp)(«a)
X Ko [V(k@)? + (nawg)?], 9

20ga® (28205 - 1)
b2 (a2wg+ 1)5/2

4
where the prime indicates that the=0 term should be * fa(awo) (k@) +

counted with a prefactor of 1/2.

To calculate the contribution to the twist rigidity from the
above Coulomb interaction, we impose an additional uni-
form twist of ) in the double helix and calculate the change
in the self-energy, i.e BEqed wo+ Q) — BEqed wo). Expanding  wherefy(X), fx(x), andf,(x) are functions defined in Appen-
the energy change in powers Gf we can then read off the dix C. The first term in the above equation corresponds to the
electrostatic twist rigidity as lowest mode of the self-energy, and comes from the electro-

static interactions between the charges that are positioned on
1 #BEgjec different domains. The expansion k& is meant to capture
L 902 0=0' (10) the Debye screening correction. The rest is the contribution
from higher modes that constitute electrostatic interactions
subject to the constraint that the relative positioning of thebetween charges that are closer to each other, and appears to
two helical strands should not alter upon deformation. This ismear out the Debye screening correction more strongly than
a plausible assumption, which implies that the paraméter the lowest mode contribution.

o]

X %(1 +cosnwy!), (14)
n=2

Celec:

changes accordingly t¢f such that{wy+Q){’ = wyl. The coefficient of the summation term in Ed4) shows
The total energy, which is the sum of the mechanical andhe possibility of a sign change whaw,=1/y2. This can be
electrostatic contributions, can be written as understood as a competition between the instability due to
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Celec/CO

FIG. 4. Cqed Co as a function ofawg. This plot corresponds to

ka=1.2 and{wy=2.1.

the so-called Earnshaw theordd8], which is inherent to a
collection of electrostatic point charges in any space configu?
ration, and the structural screening, which tends to rem0v¥

this instability.
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PHYSICAL REVIEW E69, 061919(2004

0.6 T T T T T T T T T

/G,

elec

06 08 1 12 14 16 18 2 22 24 26
am

0
FIG. 5. Cged Co as a function ofwwg. This plot corresponds to
ka=0.2 and{wy=2.1.

awg for ka=1.2 and{wy=2.1. The domain foaw, is chosen
such that the conditioik<wq is satisfied and Eq(15) is

alid. The plot shows that, for sufficiently high salt concen-
ration, the electrostatic torsional stiffness decreases as the
spontaneous twist of the double helix increases.

In the summation term in Eq14) above, where we have

dth totic f fthe B | funci d For sufficiently low salt concentration, however, it ap-
used the asymptotic forms of tn€ BesSEl IUNclions, No Aepelya 5 g that the behavior is not always monotonic, as shown in

dence onk remains and only the structural parameters OfFig. 5, whereCq. is plotted as a function ofiw, for xa
DNA such asa and o, enter. The summation diverges as - o and{w,=2.1. Interestingly, one can see th&g,. can

1/n, and needs to be regularized with a cutoff forwhich  eyen become negative, due to the fact that in @) the

can be estimated ag=2wa/t, wheret is set by the thickness first term becomes relatively weak for low salt concentra-
of each strand. Then E@14) can be written as tions and the second term, which is dominant, changes sign
for awp<1/+2.

20ga°

Celec: ?

20ga’ (28°w3 - 1)
b? (BPwd+1)%?

+f4(awg) (ka)*] +

X +|HL—(1+COS )
YT Sinwoll2) woe |

(1 + coswol) X [fo(awp) — f(awg)(ka)?

(15

In Fig. 6, the dependence €f,..is shown on the asym-
metry parametefw, for ka=1.2 andawg=2.2. One observes
that, for the relatively large window of Om< {wy=< 1.6,
Celec IS almost constant, and is thus not sensitive to the rela-
tive positioning of the two strands. Fdiwy,=0 and 27, a
divergence sets in due to the fact that the charges on the two
strands develop contacts with each other.

where y=0.577 216 is the Euler constant. Note that the
above result, as we have already mentioned, is valid only for
K< w.

Let us first evaluate the overall magnitude of the electro-
static twist rigidity, as given by Eq.15). For B-DNA, we
havea=1.2 nm, w,=1.85 nm?, b=3.4 A, and (=1.13 nm
[2], and the Bjerrum length is given #g=7.1A. Using these
parameters and defining,=2¢ga?/b?, we find C,=174A,
which is relatively large. To estimatg for B-DNA, we use
t=5 A, which givesn,~15. Using these estimates anrd
~1 nnt, Eq. (15) yields Cqe=46 A at the physiological
salt concentration. This should be compared to the overall
twist rigidity of B-DNA, which is believed to be about
75 nm[14].

To study the effect of various parameters, namely, the
spontaneous twist, the diameter, and the asymmetry of the
double helix, as well as the salt concentration, we choose to
work with the three dimensionless parameteds, «a, and
{wo. In Fig. 4, the behavior o€ is shown as a function of

/C,

elec
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FIG. 7. Cqed Co as a function ofka. This plot corresponds to . .
{wp=2.1 andawy=2.2. FIG. 8. Wgied Wy as a function ofiwg. This plot corresponds to

ka=1.2 and{wy=2.1.

Finally, the behavior o€ .is shown in Fig. 7 as a func-
tion of ka for {wy=2.1 andawy=2.2. The dependence on the
Debye screening parameter in Ef5) comes only from the
first term, where the negative sign of the coefficient «d)?
causes a dip in the plot fdZ.e aroundxa= 1.3, which by
chance corresponds to the normal physiological salt concen- 4¢za Ne
tration. However, as can be seen from Fig. 7, the dependence T |7 In2 Sin(wol/2)
of the electrostatic twist rigidity oma is extremely weak as
long as k<wq, which is a manifestation of the fact that
screening is controlled by the periodic charge distribution
and the effective screening length is set by the pRciwhich , )
is shorter thanct in this regime(see the discussion belpw Where the summation on has been performed using the

It is worth saying a few words about the other limit where CUtoff N, as discussed in Sec. Il A. Note that the above
x> wp, corresponding to high salt concentration. In ),  resultis valid only fo”‘<‘*’20- _ _
one can clearly see that in tigh term in the series there is ~ BY definingWy=4(ga/b" and using the geometrical pa-
a competition betweer andnewy to control the screening. If rameters forB-DNA (see Sec. Ill A above we find W,
the salt concentration is so high that we have n.w,, the =29-5. S0 Eq(17) y'eld_SlWelec:‘ll-l at a physiological salt
periodic structure plays no role and screening is entirely conconcentration(x~1 nni™). . .
trolled by the Debye screening in the bulk. For relatively L€t us now study the behavior ffec as a function of
strong Debye screening whe@> 1, we can use the simple @@, k&, and{wy. In Fig. 8, the dependence ¥ e is shown
asymptotic forms of the Bessel functions and find anon the parameteaw, for ka=1.2 and{w,=2.1. The plot

asymptotic expression for the electrostatic twist rigidity as Shows that for sufficiently high salt concentration the elec-
trostatic correction to the spontaneous twist increases as the

4fga
Welec= b2 (1 + COSa)Og)

X [go(awo) — ga(awp) (ka)? + ga(awp) (ka)”]

—(1+cosupd) |,

17

2 Ne 2 2_ 2 mechanical spontaneous twist of the double helix increases.

Celec= %Lzaz 1+ cosnwog)n [Z(Zawo) ([;as)/z]- In Fig. 9, the behavior oW, is shown as a function of

b* na1 [(«a)* + (nawp)?] awq for ka=1.2 and{w,=2.1. One can see that, contrary to

(16) the Cgiec Case, Wy Never changes its sign and it is always

negative.
This expression can be used for the regior wy, where it In Fig. 10, the dependence &, on the asymmetry
predictsCgqec>> 0 for k< swg, andCee.<0 for k>swy, fora  parametelwy is sketched, fowa=1.2 andawy=2.2. As in

value ofs=n.. the Cyec Case, for the relatively large window of @r4

< {wy=1.6m, W, does not appear to change appreciably,
and thus it is not sensitive to the relative positioning of the
two strands. FoZwy=0 and{wy=27, there is a divergence

Similarly, we can calculate the electrostatic contributionin W, due to the fact that the charges on the two strands
to the spontaneous twist of the charged double helix. To thatome into contact with each other.

B. Correction to spontaneous twist

end, we expand the modified Bessel functibpgnd K, to Finally, the behavior oW, is shown in Fig. 11 as a
the fourth order in«a)/(nawg), and make use of the relevant function of xa for {wy=2.1 andawy=2.2. As one can see,
asymptotic forms of (x) andK(x) for n=2. We find the dependence Ol On xa is very weak for k< wy,
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FIG. 9. Wged Wy @s a function ofwwg. This plot corresponds to
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FIG. 11. Wged Wy as a function ofca. This plot corresponds to
{wp=2.1 andawy=2.2.

which is due to the fact that the screening is controlled by théion between the charges along the backbone.

periodic charge distribution in this regime.
In the opposite limit where> wq, corresponding to high

IV. DISCUSSION

salt concentration, one can again use the appropriate limiting

form of the Bessel functions, and fitllgec as

Ne

2(ga n%aw,
— 1+ cosn
2 2 o[ + (nauwg) T2

(18)

Welec: -

to the leading order. This expression confirms tWaf.. is

also negative in the highly screened case. The facts that t

For a polyelectrolyte with a periodic spatial charge distri-
bution, such as the double-helical structure of DNA, there
are two competing mechanisms for screening the electro-
static self-interaction and its contribution to the twist rigid-
ity: the Debye screeningue to the free ions in the solution,
and thestructural screeningaused by the periodic structure
of the charge distribution; a periodic charge distribution
leads to an electric potential that decays exponentially. While

Hhe screening length for the former case is set by the Debye

St . DY e
electrostatic contribution to the spontaneous twist is negativieNdth« ", itis set by the period of the charge distribution
and that DNA tends to undertwist because of electrostatic¥ the latter, and the dominant mechanism corresponds to the

can be understood as being a result of the electrostatic rep

ca=1.2
-0.3 agy; =22
\. /

Welec/WO
1
< <
~
—
I

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Cay/m

FIG. 10. Wgied Wy as a function ofwg. This plot corresponds to
ka=1.2 andawy=2.2.

Jpne with the shorter screening length.

It appears that the contribution of electrostatic interactions
to twist rigidity can be either negative or positive, depending
on the parameters. The negative values for the electrostatic
torsional stiffness could lead to instability in the structure of
the helical polyelectrolyte, depending on whether the me-
chanical structure of the macromolecule can counterbalance
the effect of the electrostatic instability. We have used this
criterion in Fig. 2 to summarize these different regimes in the
parameter space. Considering that a helical polyelectrolyte
seems to be the general structure of many stiff biopolymers
(such as DNA and actin filament# is interesting to know
which helical configurations can in principle lead to stable
structures, and which ones cannot. This could be especially
important in the case of biopolymers that self-assemble
through polymerization processes, such as actin filaments,
where such energetic considerations could hamper or favor
the polymerization process. Note that the onset of instability
can only suggest that the structure will tumble into another
configuration, and determining the final stable structure re-
quires knowledge of other interactions.

The twist rigidity of B-DNA is believed to be roughly
75 nm [14], which should be thought of as the sum of the
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mechanical and the electrostatic contributior=Cech When the electrostatic correlations dominate, counterions
+Cqlec Our estimate oCq.c~5 Nm reveals that about 7% of may form an ordered Wigner liquid in which the layer is
the twist rigidity of DNA is due to electrostatic interactions. completely decorrelated from the underlying substrate. In
This result is more or less independent of the salt concentrahis case, the presence of the counterion layer does not have
tion, as the dependence Gf,.. On salt concentration is very an effect on the electrostatic twist rigidity due to lack of
weak. For example, the difference betwe@n,.at zero and coupling. This is also the case when thermal fluctuations
very high salt concentration is about 3.5 A. Thereforewash out all the ordering, again because the counterion layer
ACged C=0.5%, which is very small. While this naturally is decoupled from the substrate charge distribution.
explains why in experiments no sensitivity to the salt con- When the pitch of the DNA is changed, the linear charge
centration has been observed, it certainly does not mean thdensity will change because the same number of charges will
the electrostatic contribution tG is negligible. be distributed on a different length. Therefore, the amount of

In expanding the energy expression around the minimuncondensed ions on the rod will change, which will make an
energy configuration, we have used the spontaneous twist @ntropic contribution to the twist rigidity. The electrostatic
wp as the reference poifgee Eqs(10) and(13)], as opposed free energy of a charged rod above the threshold of counter-
to the preferred value due to the combination of the mechaniion condensation can be written a$15,2qQ pBF
cal and the electrostatic contributions. One can show that the: (N/¢)In(ka) where N is the total number of monovalent
renormalized spontaneous twist is givenadswy—Aw with  charges on the rod anglis the Manning parameter, that is
Aw=Weed Crecnto the leading order. Putting in numbers, we defined ast=€g/(P/ny), wheren, is the number of negative
find Aw=~-0.16 nn*, which means that the overall correc- charges on one pitch of the double-helical polyelectrolyte
tion for the spontaneous twist 8DNA is at least one order (n,=20 for DNA). This leads to a contribution to twist rigid-
of magnitude smaller tham,, and thus it will not affect the ity due to counterion condensation, that is given @y,q
obtained results to the leading order. So it would be a good- (2/€Bw3)ln(xa). For the physiological condition, we have
approximation to estimate the electrostatic contribution toc_~1.5 A, which is much smaller tha@,e, and thus the
the twist rigidity atawo. , _ entropic effect is negligible.

Screening effects are the result of the interaction between e effect of dielectric discontinuity in the vicinity of the
polyelectrolyte charges and the mobile charges in the SOy, electrolyte has been neglected in the present analysis.
vent. In a very dilute solution, the screening problem can b he interior of DNA has a very low dielectric constant and

treated by considgring the electrostatic. potential ar_ound fhe contrast with the bulk dielectric constdnthich is about
polyelectrolyte chain, which can be obtained by solving the, 0) can affect the electrostatic self-interaction. This effect

Poisson-Boltzmann equation. For high salt concentration, th L ;
screening will be very strong and the Debye-Hiickel equa; as 'F’eef.‘ studied in the case Of DNA, and.|t has been $hown
tion, which is a linearized approximation of the Poisson-that it will enhance counterion condensation by effectively

Boltzmann equation, yields a sufficiently accurate descripStrengthening the substrate potential to such an extent that
tion of the screening potential. In the case of weak screeningh® counterion layer will become commensurate with the
however, the Poisson-Boltzmann equation predicts that thdouble-helical backbonfL8]. In this case, one can incorpo-
counterions accumulate nearby the po|ye|ectro|yte; a phel’.ate the effect of the dielectric dlSCOﬂtInUIty by using a cor-
nomenon termed counterion condensation. In this case, it hdgspondingoe, as discussed above. Another effect of a low
been shown that an effective description in which a condielectric constant in the interior would be the appearance of
densed layer of counterions is assumed in the immediaténage charges, which would slightly enhance the electro-
vicinity of the polyelectrolytgwith the major effect of renor-  static self-energy.

malizing the surface charge densgignd a coupled Debye- In the above analysis we have assumed that imposing a
Huckel screening in the bulk is a good approximation to thefinite angle of twist between the two ends of a helical poly-
nonlinear Poisson-Boltzmann screenid-17. electrolyte leads to a uniform twist. This is analogous to the

Let us now try to elaborate on the effect of counterionassumption of uniform bending made by Odijk when calcu-
condensation. For double-stranded DNA, the charge densitiating the electrostatic bending rigidity, and presumably
is sufficiently high such that counterions will condense onholds true when the effective elasticity due to electrostatics is
the DNA, where they are confined near the sugar-phosphatecal. In Ref.[21], this assumption was scrutinized, and it
backbone[18]. The condensed layer of counterions can de-was shown that this assumption is valid provided one of
velop three kinds of ordering depending on the competitiorthese conditions holdsil) the polyelectrolyte segment is
between electrostatic correlations, substrate interactions, ahdng, (2) the Debye screening is stron@) the charging is
thermal fluctuationd19]. If the substrate interaction is so weak, or(4) the mechanical stiffness of the polyelectrolyte is
strong that the counterions are bound to be adsorbed ontarger than the electrostatic contribution. We expect the same
specific sites and stay there, then the counterion layeargument to hold true for the twist rigidity as well. Since for
couples to the substrate charge distribution and makes the case of DNA we have shown that the mechanical twist
commensurate ordered structure. This will be the case, fatigidity is much larger than the electrostatic contribution, we
example, when theH is changed and the *Hcounterions can safely assume that the twist is uniform.
neutralize some of the phosphate groups of DNA. In this In conclusion, we have studied the electrostatic contribu-
case, the effect of counterion condensation on the electraion to the twist rigidity of DNA, taking into account its
static twist rigidity can be taken into account by simply usingdependence on the salt concentration in the solvent. We have
the effective distance between neighboring chafggsin-  shown that there is a non-negligible electrostatic contribution
stead ofb in the present analysis. to the twist rigidity, which varies very slowly on changing
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the salt concentration in the solution. By changing the geo- o Bk, a)
. . . — 71,2 2 2 n\"™M L

metrical parameters of the helix and the Debye screening®Eeiec= 4m(gLa?>, |om,| dk, k. 7 2 2
. L ) mn 0 2mm/P)*+ k4 + «

length, the electrostatic twist rigidity can change sign and '

become negative, implying that a helical structure could be a (A5)

stable as well as an unstable configuration for a helical poly-

electrolyte. We finally note that the present analysis can bg

also applied to other biopolymers suchkasctin.

erforming the final integration ovér, using[22]
“ X
fo 21 Al Fdx=1, (K, (), (A6)
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APPENDIX B: ASYMPTOTIC FORMS OF THE BESSEL

FUNCTIONS
APPENDIX A: COULOMB ENERGY IN FOURIER SPACE In this appendix, the asymptotic forms 6f(nx) and
Due to the periodicity of the charge distribution, it is con- Kn(nX) for largen are derived. We use the integral represen-
venient to calculate the electrostatic self-energy in@gin  tation of these functions:

Fourier space. We start from the Fourier representation of the

. - i i 1 nx\" (**
screened Debye-Huckel interaction in Ef): | = —(_> f dpd™P(1 — p2)-1/2
= - 1721 |, dpeTa )T

2 d3k 2
BEelec= aE f (_ f dZdiJ de@’O’(Z, 9)0’(2’,0')
aw

2m)° 0 172 n [
Kn(nx) _ ar 2 (%) f dpe—nxp(pZ _ 1)n—1/2_
X47T_€B ik [F(z.0)-7( 0')] (A1) (n-121\ 2/ J4
2€
K2+ K (B1)

Using cylindrical coordinates, we can writg(z,6)=Zz  Let us first consider the case binx). We denote
+a(cos gx+sin 6y), which in conjunction with k=k,z

+1 +1
+k, (cos ¢x+sin ¢y), yields Q= J dp €"P(1 _p2)n—1/2:f dpe®  (B2)
-1 -1
¢ a2 27
BEelec= BT f dZdiJ dede’ and expandy(p) aroundp,, the position of its maximum, to
second order ofp—py), as
e “k dk, f
d ’ ! 1 rr
f e 2m )y (2m)? ¢m2,n mEn Imadmn 9(p) = g(Po) + "' (Po) (P~ Po)’
A7 ' —

T j(2amiP+ky)z+in 6+ik 9 p—0) 1 1\ 1+
Xk§+ki+,<2el z+in6+ik  a co :nxp)+<n—5)ln(1—pg)—(n )( )2( Po)?,
Xei(27-rm’/p—kz)z’+in’0’—ikLa cos(z,b—f)’). (A2) (53)

After integration overz, 7', andk,, we find where
o ]
E dode’'d =+t — |1+ —=. B4
BEelec= 2 JO ¢f0 (27T)2 Po X 2nx Vm ( )
S AL 6y Using this form forg(p), Q can be found as
>< ’ ’
o e TmnTmn’ o P2 + 12 + 42 1-p2
mhn L —_ Po enxpo+(n—1/2)ln(1—p(2))_ (B5)
w« @i(ne+n’6')+iak, [cod ¢-6)-cod ¢-6')] (A3) Vn(1 +pd)

By defining 0= 6,+ ¢ and @’ = 6,+ ¢, the integration over the Finally, using Stirling’s formula fon!, we find

three angles in EqA3) can be performed as 1 1- pg
() = ===
f deda/dd)ei(nﬁm’0’)+iakl[cos(¢—0)—cos(¢—0’)] V2 y n(l+ po)
X e(n—1/2)In(1—p0)+nx;:b+n[1+In(x12)]+1/241. (BG)

=(2m)36, —[In(k @ T?, A4
(2m)"3h - 3nlk, 3] A4 Using a similar treatment, we find the largeasymptotic
to yield behavior forK,(nx) as
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n
FIG. 12. Difference between the asymptotic form of

1,(nXK,(nx) and its exact value as a function offor several val-
ues ofx. The solid line corresponds t0=0.8, the dashed line cor-
responds tx=1.8, and the dotted line correspondsxte2.8. The
difference is less than 0.25%.

1 12
Ky = =P
v2n n(l +ph 2)
% et(n—l/2 In(pg —l)—nxp(')+n[l+ln(x/2)]+1/2m (B7)
where
BESACSe SN (T (88)
Po= X 2nx V1+x2)

By using these relations fdp(nx) and K,(nx), we find

1
O W ,
where 6=0.

We defineA(n,x) =1,(nx)K,(nx)—1/2nJ1+x? and in Fig.
12 show the behavior af(n,x) as a function oh for several
values ofx. As can be seen, the difference is less than 0.2

1
s
+x2Nn

I,(NXKL(NX) = (B9)

2\1

in the worst case, which implies that the asymptotic form of
[,(nX)K,(nx) for n=2 can be used as a good approximation

for the range ofk we are interested in.

In Fig. 13, we show the behavior @f(n,x) as a function
of x for different values oh. This plot shows that fon=2
the difference goes to zero asncreases.

APPENDIX C: THE EXPLICIT FORMS OF THE
AUXILIARY FUNCTIONS

In this appendix, we give the explicit forms of the auxil-
iary functions used in Eqg14), (15), and(17), above. The
function fy(x) reads

PHYSICAL REVIEW E 69, 061919(2004)

05

FIG. 13. Difference between the asymptotic form of
I,(nYK,(nx) and its exact value as a function rffor different
values ofn. The solid line corresponds t0=2, the dashed line
corresponds tm=3, and the dotted line correspondsrng5. The
difference is less than 0.3%.

1
fo(x) = 4(1 + ;) [1(X)K1(X) + 411 (XK1 (X)

2
~ K0 + (0K ()], (Cy

where the prime indicates differentiation. One can show that

for x<1 it behaves ady(x)=In x+O(x?In x). The second
function f,(x) is written as

1.1 1
fa(x) =~ 3(; + ;)[I 100K1(x) + 1100K1 ()] + “T11(x)K5(%)

3
= 1)K ()] + ;[Il(X)Kl(X) = 213 (0K1(x)]

3 2
+ ﬁ[IE(X)Kl(X) =1 ()K5(X) ] + X—3[I 1(XK,(x)
(C2

behaves as f,(x)=1/(2x%)—In x/2

= (K (X)],

and for x<1 it

5%ro(len X). Finally, for f4(x) we have

176 + 1362 + 19*
16x8

7
f4(x) = [1(X)K4(x) = @['3(X)K1(X)

1
+11(0K3(x)] + F['z(X)Ki(X) = 11(0K(x)]

+11+2<2
x*

14+ 3¢
;Xél[u(x)Kl(x) - LK)

100K (%) * To 39K

+

88+ 49<2

—— = [HOK(X) + 11(x)K(x)]
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FIG. 14. The auxiliary function$y(x), f2(x), andf4(x). FIG. 15. The auxiliary functiongy(x), go(x), andg,(x).

1
= —<[1L(X)K1(x) = [{(X)Kx(X)], C3
x5[ 200K1(0) = 110)KAX)] €3 9,(X)=-3/(4x*+0(1/x®) for x>1. Finally, for g,(x) we
which behaves as f,(0)=3/(4x)—1/(8x2)+5/64 Inx  Nave
+0(x? In x), for x<1. At infinity, all of these functions go to
zero faster than &, with f,(x) vanishing faster tha,(x),
andf,(x) faster thanfy(x). (See Fig. 14

1 1
The functiongy(x) is given by ga(X) = ;[Ii(x)Kl(x) + 1, (0K ()] + y[lé(X)Ki(X)
9o(¥) = 11 (XK1 (X) + 11(0K;(x), (C9 1
where the prime indicates differentiation. It is simple to show ~ 110K (] = R[‘” 100K1(x) + 311(x)K1(¥)]

that for x<1 it behaves asgo(x):%(l+4~y—4 In 2)x 1 1
+%x In x+O(x%) and forx>1 it behaves agy(x)=-1/2x° = 5 [100K1(X) = 1, (0K5(0] + 110K 4(x)
+0(1/x%. The functiong,(x) is written as 8x x*

, 1
0 = 5,31 + 1 0KA 0]~ ST OK * LKA = S hbKA00, (0

F10KI00] = 200K 00 = (0K,

(c5) which behaves ag,(x)=-1/(8x3)+1/(16x)+0O(x) for x<1,
and asg,(x)=-15/(16x8)+O(1/x8) for x>1. In Fig. 15, we
which behaves ag),(x)=-1/(4x)+0O(x) for x<1 and as show the behavior of;(x) as a function oi.
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